
Daniel Gomez Blanco
Principal Engineer @Skyscanner

How to transparently migrate
300+ services to OpenTelemetry



Who am I?
What am I doing 

here?

• Principal Engineer at Skyscanner

• We're trusted by 100M travellers/month

• Focus on observability and operational 
monitoring

• Reducing toil and cognitive load for the 
last 10 years

•SKIPJAQ – ML-driven config optimisation

•CERN – DB On Demand now running 1000+ 

DBs



Agenda

• Tracing at Skyscanner

• Motivation and constraints

• How we implemented OpenTelemetry

• Rolling out changes

• Hurdles and gotchas

• Next steps and OpenTracing deprecation

• Questions



Tracing at Skyscanner
A short history of migrations for 
300+ Java, Python and Node 

services

2018

2020

2019

2021

AWS X-Ray on 
ECS

OpenTracing
+ Lightstep

Lightstep Satellites in K8s 

OpenTelemetry and beyond!

OpenTracing upgrades 
and o11y strategy



Our motivation for 
OpenTelemetry

• Our tracing abstraction was becoming 
a source of issues

• Hard to keep up with API upgrades
• Prone to memory leaks and orphaned 

spans
• Context propagation sometimes faulty

• OpenTracing deprecation soon(-ish)

• Avoiding vendor lock-in

• Auto vs custom instrumentation

• Skyscanner-wide CNCF alignment



Constraints

• No big asks from service owners

• No breaking changes in 
instrumentation

• No disjointed traces

• No orphaned spans

• No default attribute changes



How we implemented 
OpenTelemetry

Our goal: to make the migration a 
version bump

• OpenTracing shims for backward 
compatible instrumentation

• Composite trace context propagators 
to avoid disjoined traces or orphaned 
spans

• OpenTelemetry Collectors to provide 
a cetralised export config

• Common config libs (MShell)
• Configure SDK

• Helper libraries

• Apply resource attributes



Instrumentation with OpenTracing + 
OpenTelemetry



Collection & Export with OpenTracing + 
OpenTelemetry



Rolling out changes

• Tracing reference apps

• Validate common scenarios
• Showcase best practices

• Benchmarks in dev environments

• Early adopters behind feature flag

• Default to OpenTelemetry in our 
config libraries

• Dependabot version bump for 
service owners

Our goal: to make the migration a 
version bump



OpenTelemetry Adoption Within the Mesh



Hurdles, gotchas...

• Trace ID truncation: upgrade your 
Lightstep Satellites!

• Order of composite propagators matters

• Never use SDK methods in plugins (we 
did and regretted it)

• OTel SDK more conservative on 
resources

• Tracer metrics need to be exported

• Global OTel instance re-registration is not 
a no-op

• SpanKind must be present at span 
creation

… and other lessons we learnt 
along the way



Next steps and 
OpenTracing deprecation

• Slow deprecation of OpenTracing

• Adapting helper libs to OpenTelemetry

• Auto-instrumention to replace custom 
and OpenTracing plugins

• Adopting semantic conventions

• Reporting and budgeting

• Sampling at the Collector level

• Metrics and logs

Our goal: to make the migration a 
version bump



Thank you, now time for questions!


